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A front tracking method to study multi-fluid flows in which a sharp interface
separates incompressible fluids of different densities and viscosities is adopted to
simulate the unsteady motion of an infinitely thin premixed flame characterized by
significant chemical heat release and hence thermal expansion. The flow field is
discretized by a conservative finite difference approximation on a stationary grid,
and the flame surface is explicitly represented by connected marker points that move
with the local flame speed, relative to the flow field. The performance of the method
is tested by applying it to a steady planar flame and the Darrieus—Landau instability.
The numerical results are in good agreement with analytical results. The method is
also applied to the interaction between a flame and a vortex array. The results show
that the flame can destroy the vorticity originally in the unburnt gas and generate
vorticity of opposite sign in the burnt gase 1998 Academic Press

1. INTRODUCTION

Propagation of a premixed flame in a turbulent flow is one of the most fundamel
and challenging problems in combustion science. A direct numerical simulation of the f
requires the simultaneous solutions of the chemical kinetics coupled with the hydrodyng
equations. The stiffness and nonlinearity of the chemical reaction terms combined witt
nonlinearity of the flow makes this an exceedingly difficult task. However, for many practi
applications the flame can be treated as a surface of zero thickness moving in a cor
flow field. This simplifies the problem considerably, but the task is still fairly challengin

By treating the flame as a surface, several numerical methods have been develor
simulate the flame motion. One approach is to track a passive flame front by an equatic
a scalar fields(x, t) whose zero level represents the flame. This is the so-daleguation
[1, 2], given by
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whereV is the flow velocity and; the local normal propagation speed of the flame relative
the unburnt mixture. Th&-equation is simply a kinematic description of the propagatic
of a front in the direction normal to itself, and has been mostly employed for turbul
combustion in the laminar flamelet regime with constant density assumption. Using
G-equation, Peters [3], for example, investigated the flamelet formulation for premi;
combustion. By transforming the scaler field equation into wavenumber space, he obte
a definiation of a spectrum function for the turbulent flame front. Aldredge [4] obtained
steady-state flame shapes and the corresponding average flame speeds for periodic flo
different wavelengths, and found that the average flame speed increases with decre
wavelength of the periodic flow. Aldredge [5] examined the unsteady motion of flan
through a prescribed incompressible vortical velocity field, showing that on the average
flame propagation rate increased with the intensity of the vorticity, when the intensity 1
strong. The recent work by Helenbroek al. [6] on flame and vortex array showed tha
stretch through curvature effects reduces the mean burning velocity from that obtaine
considering only the change in the flame surface area due to flame wrinkling.

Another numerical method, the Simple Line Interface Calculation, or SLIC, origina
developed for multifluid flows by Noh and Woddward [7] and Chorin [8], has also be
used to describe premixed flames in the unsteady flow fields. In SLIC a marker functic
advected with the flow, but explicit reconstruction of the sharp interface during advec
prevents numerical diffusion. Wu and Driscoll [9] used the SLIC method to study a pail
vortices convected through a laminar premixed flame with constant density. It was fc
that a flame cannot propagate over the vortices and thus temporarily remains attached
moving vortex if the vortex-induced velocity that opposes the flame motion is sufficier
large. The SLIC method was also used by Ashurst and Barr [10] to simulate the interac
between a flame surface and a time dependent turbulent flow. Their results show the
turbulent flame speed is determined from the overall rate of product formation, wt
depends linearly on the root-mean-square turbulent intensity. The advantages of the
method are that it can include the gas expansion through the flame surface and h
complicated flame topology. However, it is difficult to locate the flame precisely, and he
to evaluate the front curvature, because of the ragged flame in SLIC simulations.

An alternative to capture the flame front by a marker function is to track the front ex
citly by either boundary confirming grids or separate computational elements. Unverdi
Tryggvason [11] presented a front tracking method based on marking a boundary bet
two fluids by connected points. The governing equations for the fluid motion were solve
afixed grid and the points moved by interpolating velocities from the fixed grid. The den:
and viscosity of the fluid were reconstructed from the location of the front. The interfac
given a small thickness of the order of the mesh size, but this thickness remains consta
all time and therefore numerical diffusion is avoided. This front tracking method has b
successfully used to examine several multi-fluid phenomena, including bubbles risin
a gravity field by Esmaeeli and Tryggvason [12] and dendritic solidification of pure su
tances by Juric and Tryggvason [13]. It has also been used to investigate droplet colli
by Qianet al.[14] where it was shown that the calculated results agree well with rest
obtained through experimental imaging. The formulation used in the method of Unve
and Tryggvason [11], where one set of conservation equations is solved on a fixed gr
very similar to the approach taken in the Volume-Of-Fluid method (Hirt and Nichols [1!
and the recently developed level-set-method (Sussrhah[16]) with the exception that
Unverdi and Tryggvason [11] explicitly track the interface instead of capturing it with
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marker function. For an application of level-set-methods to flame propagation, see O
and Sethian [17], where the flame speed was assumed to depend on the flame cur
only and no coupling with the flow field was included.

In this paper we extend the front tracking method of Unverdi and Tryggvason [11]
allow the simulation of the motion of infinitely thin premixed flames. This extension requi
us to account for localized expansion at the flame interface where the density cha
from that of the unburnt gas to the burnt. Viscosity generally also increases across
flame.

2. NUMERICAL METHOD

The method is an extension of the Unverdi and Tryggvason [11] front tracking techni
for multi-fluid flows, following closely some of the ideas presented in Juric and Tryggvas
[18] for phase change problems. Figure 1 shows a schematic of the problem. We con
a flame surface propagating through a premixed gas at a flame Speweith respect to
the unburnt gas. Both the unburnt and the burnt gas are assumed to be incompressib
expansion takes place as the gas burns upon crossing the flame such that the density
burnt gas is generally much lower than that of the unburnt gas. Hydrocarbon flames
example, usually reduce the density of the burnt gas to about one fifth of the unburnt
under standard atmospheric conditions. Furthermore, viscosities on either side of the 1
are constant but unequal, with the viscosity of the burnt gas usually higher than that o
unburnt gas.

Instead of writing the Navier—Stokes equations separately for the burnt and unburnt
and matching them at the flame, here we write one set of equations that describe
flow in the entire computational domain. Thus, we have to allow for variable density ¢
viscosity fields as well as local expansion across the flame. The Navier—Stokes eque

Bumnt

Flame

Unburnt

FIG. 1. Schematic of the numerical simulation of the premixed flame propagation in non-uniform flow. T
flame separates the burnt and the unburned gas which have different densities and viscosities.
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in conservative form are

apu
%+V.puu=—Vp+V-u(Vu+VTu). 2)
Hereu is the velocity field,p the pressure, andandu are, respectively, the discontinuous

density and viscosity fields. The mass conservation equation is

ap
— 4+ V. =0. 3
st TV opu 3

Away from the flame, the density is constant such that
V.u=0. 4)

Across the flame, however, the divergence of the velocity field is non-zero. The expan
across the flame can be taken into account in several ways, one of which is simply t
the divergence of the velocity field equal to the local rate of expansion. Since the flan
not completely thin in the approach used here as will be explained shortly, we have fou
convenient to implement conservation of mass slightly differently from Eq. (4), by worki
with Eqg. (3) directly. Away from the flame where the density is constant it reduces to
usual incompressibility condition (4). At the flame, however, the local rate of change
density is equal to the divergence of the density times the velocity and for a thin flame
can write

V-pu:—/ ApV -nd(X — x¢) da, (5)
f

whereV is the total velocity of the flama,the normal vector, and p the density difference
between unburnt and burnt gases. The integration is over the entire flame surface. Ac
the delta functions by integrating along the flame results in a source term that is contin
along the flame, but is zero away from the flame. For a detailed derivation of Eqg. (5),
the Appendix.

The discretization of these equations is conventional. We use a fixed staggered gri
the velocities and pressure and second order centered differences for all spatial derive
Time integration is done by an explicit first order projection method:

(pw* = (pw)" + AtAn(u), (6)
where An(u) is the discretized form of the advection and diffusion term in Eq. (2). Tt

subscript$ andn denote the finite difference approximation for space and time, respectivi
and(pu)* is the unprojected mass flux (Peyret and Taylor [19]). The second step is

(pW)™™ = (pu)* — AtVpp, 7

where the pressure is found by solving

VEp = Vi - (pu)* — (/f Ap(V - n)“*lcﬁ(x—xf)da) ) (8)
h
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Since the total velocity of the flam®,, depends on the pressure, this equation has to
solved in an iterative manner even when there is no expansion at the flame. This pre
equation is slightly different from the usual one for stratified flow because of the manne
which the mass conservation equation is written. It can, however, also be used for sh;
stratified flows, in which casé is simply the fluid velocity, and replaces a pressure equati
of variable coefficients with a regular Possion equation where the right hand side depen
the(n+ 1) time step solution and therefore must be solved iteratively. We solve the pres:
equation with a simple SOR iteration (using an over relaxation coefficient of 1.2) and
that generally, only a few iterations of the system (Eqgs. (7) and (8)) are required to re
convergence. Here, we compute the error at each grid point and terminate the iteration
the absolute value of the maximum error is smaller tharf 6r the pressure. Pressure is
generallyO(1) in the computations presented here.

The flame is represented by a “front” consisting of connected points that are advecte
velocity interpolated from the fixed grid. This front marks the place where the density
viscosity change values and identifies where the source termin Eq. (5) is located. To tra
the source term, as well as the jump in the density from the front to the fixed grid, we use
smoothing function introduced by Peskin [20]. This results in a discrete approximatiol
the delta function on the fixed grid that has a width of about 3—4 grid points. To ensure
the front property is conserved as it is smoothed onto the grid we insist that

Z(bijgith:/A g da 9
N S

holds, whereN is the number of grid points that the quantity at each front point is distribut
to, theg;’s are the weight at each grid point, given by the Peskin interpolation function [2
in our caseg; is some front quantity, per unit length, agg is the same quantity on the
fixed grid, per unit volume. Furthermorh,is the grid spacing and we also must have
> ¢ij =1. We note that since we approximate the delta functions on a fixed grid,
are seeking a “weak” solution that satisfies the correct conservation principles, but is
discontinuous across the flame. The solution to the original partial differential equati
should be discontinuous and the transition zone becomes thinner as the grid is refine

To interpolate the velocity from the grid to the front we also used the Peskin interpolat
function. If there is no expansion across the front, the velocity field is continuous and
interpolation is straightforward. Here, however, the fluid velocity is discontinuous acr
the flame and only the flame speed relative to the unburntjass given. A straightfor-
ward interpolation will yield some approximation of the average velocity, and the va
is generally sensitive to the exact location of the front. We have found it more robus
interpolate the mass flugpu) and then divide it by the average density to get the avera
local fluid velocity,u,,. Once the average fluid velocity has been found by interpolatic
the total flame velocity is obtained as

Vi =Uay+ Sf,aan with Sf,av = S ou/(pu + pb), (10)

whereS; 4 is the flame speed relative to the local average fluid velagityp, andp, are

the densities of unburnt and burnt gases. Once the velocity of the front points is four
new position is computed by a first order explicit time integration. We note that althot
we have used a first order scheme here for both the field equations and the front adve:
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we believe that itis relatively easy to implement a second order method along the line o
predictor-corrector method used by Esmaeeli and Tryggvason [12], for example. The si
the time step is selected by using the usual restrictions for centered difference scheme
explicit time integration (Peyret and Taylor [19]). Based on our experience with multifit
flows without any reaction at the interface we believe that either different advection sche
or different spacial differentiation could be used, without affecting the basic performa
of the method.

One additional difficulty arises due to the finite thickness of the transition zone fr
the burnt to the unburnt gas. The divergence of the velocity field is non-zero in a zon
finite thickness around the flame, and this results in a normal stress that is balanced
local pressure peak. To avoid this peak we redefine the pressure by explicitly subtra
2u(V-u) | from the stresses (see Juric and Tryggvason [18]). This redefinition has no ef
on the results, but does make the average of the diagonal terms in the stress tensor e
the pressure, as it is for incompressible flows.

All simulations were performed on workstations. The run in Subsection 3.3 on a 14(
280 grid took about 8 hours on a DEC 3000.

3. COMPUTATIONAL EXAMPLES

3.1. One-Dimensional Flame

We first show numerical results for a steady state one-dimensional flame with a unif
inflow of reactantsif{=1 andp =1 atx — —o0). The analytical solutions for densipy,
velocity u, and pressure are

(11)
o =1/q, u=aq, and p=0 x>0

{,o:l, u=1 and p=gq—-1x<0
with the flame located at = 0, whereq is the ratio of the densities of the unburnt anc
burnt gas. The mass flyppu and the total pressurg + pu?) are constant. The flame speec
is S¢ = 1 with respect to the unburned gas, the viscosity of both the unburned and b
ed gas is 0.005, and the size of the computational domain is 1 by 1. At the inlet the velc
and density is specified and at the outlet the velocity gradient is set to zero.

Figures 2 and 3 show the profiles@fu, pu, andp across the flame for two different grid
resolutions: 20 and 40 grid points in a unit domain, respectively. It is seen that the det
decreases and the velocity increases across the flame, while the mass ifusonstant.
The pressure decreases and the reactant is burned and expanded through the flame
the total pressurép + pu?) is constant in the entire domain. These results clearly sh
that the computed transition zone jump becomes sharper with increasing grid resol
and approaches the analytical results. We notedha only constant for stationary flames
and for moving flames we expect a larger uncertainty in the determination of the fle
velocity.

3.2. Computation of Darrieus—Landau Instability

We next use the front tracking method to study the Darrieus—Landau instability [21].
compute the linear growth rates, we take as the initial condition a flame in the shape
sine wave of a low amplitude (18 in units of wave length). The physical parameters at
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FIG.2. Acomparison of numerically computed density, velocity, and mass flux in a one dimension steady-:
flame with analytical results. Results for two different grids, with 20 and 40 grid points, are shown.

ou=10, pp=0.2, uy, =0.011, up =0.035 andS; = 1. These numbers have been selecte
to give nondimensional numbers similar to a methane flame at atmospheric conditions
computational domain is a square with side lengths equat® 2nd resolved by 60 by

60 grid points. After a short initial transient, the amplitude begins to grow exponentia
Figure 4(a) shows the flame instability development for small sinusoidal disturbanct
wave number 5 with a density ratio of 5; Fig. 4(b) plots the logarithm of the amplitu
normalized by the initial amplitude as a function of time for density ratios of 3, 4, and
For the smaller density ratio the density of the burned gas is increased, but other paran
are unchanged. There is a good agreement between the numerical and the analytical r
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FIG.3. Acomparison of numerically computed pressure in a one dimension steady-state flame with analy
results. Results for two different grids, with 20 and 40 grid points, are shown.
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FIG. 4. (a) The development of a Darrieus—Landau flame instability from a small sinusoidal disturbanc
wave number 5 with density ratio of 5; (b) comparison between the computed growth and analytical result
wave number 5 and three different density ratios.

Note that the amplitude growth is reduced in the numerical results as time increases o
nonlinear effects [22]. While the finite size of the computational domain may also contrik
to the reduction in the growth rate, we believe the effects are small for the small amplit
that we are examining here.

The development of the instability for larger disturbances with nonlinear effects is sh
in Fig. 5. The initial flame is again a sinusoidal shape with wave number 5 and amplitude
The relatively large amplitude was selected to avoid the appearance of short waves
contaminate the solution in Fig. 4 at late times. These waves are triggered by the gric
are aconsequence of the ill-posedness of the flame problem when no short wave stabili:
mechanism is included. In the computation presented in the next section, we introdu
Markstein length to stabilize those short waves. The instability develops quickly, resultin
an unsymmetric flame front with a typical cusp pointing towards the burnt gas as often
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FIG.5. The nonlinear evolution of a Darrieus—Landau flame instability for wave number 5 and initial dist
bance amplitude of 0.2. A cusp pointing towards the burnt gas, as often seen in premixed flames, is formed

in premixed flames. Due to the conservation of normal mass flux and transverse velc
the pressure near the cusp is lower than that at the flame trough. The gas flow conv
when it moves toward the cusp in the unburnt region, then diverges from the flame in
burnt region due to the expansion, as shown in Fig. 6.

We have repeated the computation of the initial evolution of the instability on differe
grids and found it to be essentially unchanged for grids with as few as eight grid points
wave length. The insensitivity to the resolution is presumably due to the fact that the fl:
velocity is specified and the growth of the initial wave is due to its geometry, rather tf
hydrodynamic effects. A more demanding test problem, where the generation of vorti
at the flame front and its subsequent evolution must be accounted for is presented i
next section.

3.3. Flame Propagation in a Vortical Flow Field

We next apply the front tracking method to study the coupling between gas expansior
hydrodynamics by simulating the interaction of a flame with an already existing vortic
field. At time zero the vorticity is assumed to consist of an array of Oseen vorticies. F
single Oseen vortex, the vorticity strength decreases exponentially from the vortex ce
and the azimuthal velocity in polar coordinate is given by

r 2 2
Vo = —[1 —exp(—r</R9)], (12)
2rr
where R is the vortex core size anfl is the total circulation. Here we takR=0.5
andI' = 1.5 so the maximum velocity induced by the vortex\gn, = 0.25. The period
length of the vortex array is 5. To suppress the hydrodynamic instability developmer
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FIG.6. Velocity vectors around the cusp formed at late times. The flow in the unburned gas converges to
the cusp, then diverges from the flame in the burnt region due to the expansion when the fluid crosses the f

short wavelengths, we use a Markstein length parameter in the flame speed expre:
St = Sto(1 + L), whereL is the Markstein number [23, 24] andis the curvature of
the flame. The computation was performed in a rectangular domain of width 5 (one pe
length in thex direction) and length 10 (in the direction), and resolved by 140 by 280
grid points. The density ratio is 5 ald=0.1. L was selected in such a way that smal
scale waves were stabilized, but the effect on longer waves was minimal. Other phy
parameters are the same as in the last section.

The evolution of the flame front through the vortex is shown in Fig. 7. The flame spee
directed downward, but as the flame moves through the vortex it is distorted. To investi
how much of the distortion is due to the velocity induced by the vortex and how mucl
due to the local expansion in the flame, we have also computed the motion of a flame
the same velocity, relative to the unburnt gas, but assuming no expansion so the der
in the burnt gas are the same as those in the unburnt one. Since there is no expansior
interface, decay of the initial vorticity is by diffusion only. The evolution of the flame f
this case is shown in Fig. 8, and it is seen that while the flame is not flat, the deforme
is much smaller than when there is expansion across the flame. Thus, while the presel
the vortex disturbs the flame, the subsequent evolution is due to a Landau instability o
perturbed interface. Since the vortex induces a counterclockwise rotational velocity ir
fluid, the flame is pushed down to the left of the vortex and up on the right hand side. C
the flame passes the vortex, it moves to the right with the fluid. Since we have mod
the flame speed to stabilize short wave perturbations, the spike protruding upward |
rounded “nose” that moves down with the flame.
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FIG. 7. The evolution of the flame front as it moves over a stationary vortex. Here the density between
unburned and the burned gas is 5.

7 t=0

2 1 'l I

0 1 2 , 3 4 5

FIG. 8. The evolution of the flame front as it moves over a stationary vortex. Here there is no expansio
the flame and the density in the unburned and the burned gas are the same.
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FIG.9. Generation and attenuation of vorticity by the passage of a flame through an initially stationary vor
The flame and the vorticity field are shown at tintes0, 1.5, and 1.9. The initial radially symmetric vorticity
configuration is destroyed, and new vorticity corresponding to the deformed flame is generated.

The flame and the vorticity contourstat 0, 1.5, and 19, are shown in Figs. 9(a)-9(c).
Initially, the only vorticity is in the vortex, but as the flame moves downward, second
vorticity appears behind the flame. The vorticity is negative where the flame has a pos
slope and positive where the flame slope is negative. Since there is a strong upward ve
above the flame due to the expansion across the flame, the vorticity is carried upv
We note that there are no remains of the original positive vorticity in the middle of 1
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FIG. 9—Continued

domain once the flame has passgee: 1.9), and that the strength of the secondary vorticit
is comparable with that of the original vortex. These results demonstrate the signifit
influence of gas expansion across a flame on the hydrodynamics, and the necess
taking into account the coupling between the flame and the flow field.

To demonstrate that the results in Figs. 7 and 9 are well converged, we compare
solutions at = 1.9 for the flame front and vorticity contours, as calculated on three differe
grids. Figure 10 shows the flame shape, and Fig. 11 shows the vorticity contours for t

12.6

12.4

11.6

11.4 : : : '
0 1 2 3 4 5

FIG. 10. Resolution test for the flame front = 1.9. The results from three grid resolutions are shown: 3(
by 60, 70 by 140, and 140 by 280. As the grid is refined, the flame shape converges.
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FIG. 11. Resolution test showing the vorticity contourd at 1.9 for three grid resolutions: 30 by 60, 70 by
140, and 140 by 280. As the grid is refined, the vorticity contours converge. Notice that the contour levels
been selected slightly differently than in Fig. 9 to show the shape of the vorticity distribution on the coarser ¢
better.
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FIG. 11—Continued

different grid resolutions: 30 by 60, 70 by 140, and 140 by 280 grid points. Notice tl
the contour levels have been selected slightly different than in Fig. 9 to show the shay
the vorticity distribution on the coarser grids better. The flame fronts are close for differ
grids, and the vorticity contours become similar as the grids become finer.

4. CONCLUSIONS

A numerical method for the simulation of the unsteady motion of a premixed flame |
been presented. The flame is assumed to be a surface separating the burnt and unbui
propagating with a prescribed flame velocity. The density and other material propel
change discontinuously across the flame. The Navier—Stokes equations are solved
stationary two-dimensional finite difference grid for both the unburnt and the burnt gas,
the flame surface is explicitly tracked by connected marker points.

The accuracy of the method has been demonstrated by comparison of the results
exact solutions for a one-dimensional steady flame and the Darrieus—Landau instal
and through grid resolution studies. The method has also been applied to the interactio
flame with a vortex array. The results show both wrinkling of the flame and the appeare
of flame-generated vorticity in the burnt gas.

The major limitation of the method as currently implemented is the thin flame assur
tion and hence the inability to resolve the diffusive structure of the flame by solving for
energy and the species diffusion equations. While direct simulations where all details o
flow and the chemical reaction field are resolved are starting to appear (see Boah$ab]
for a simulation of the interaction of a vortex with a premixed flame, and Denet and Hald
wang [26] for a simulation of the Darrieus—Landau instability) such simulations are limit
to a relatively small range of scales. It is likely that that a more complete flame model (s
as the one presented by Daktal.[27] for a strained diffusion flame) could be incorporate
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into the present methodology to account for the diffusive structure (which would allow
effects such as quenching) without increasing the resolution requirement significantly.

APPENDIX

The density can be written in terms of the constant densities on either side of the intel
and a Heaviside functiord , which is unity in fluidi and zero in fluidb:

p(X, y9 t) = Ioi H (X’ y, t) + /00(1 - H (X’ y’ t))

Here we have assumed a two-dimensional flow. The extension to three-dimensionsiis st
forward. The time derivative of the density is

ap aH oH oH
a0 =P~ Por = (0= po)

at at at
To find the time derivative of the Heaviside function, itis perhaps most convenient to exp
H in terms of an integral over the product of one-dimensidnfinctions:

H(x,y,t) = —j{ S(x—X)8(y —y)nds
A(t)

The integral is over an areabounded by a contou8. H is obviously 1 if , y) is within
S and 0 otherwise. To find the time derivativeldf note that sinced is either 1 or 0, its
evolution is governed by

oH

T +V.VH =0,
whereV is a smooth velocity field that matches the interface velocity at the interface
there is no expansion at the interface and the fluids are incompre&éitse)d be the fluid
velocity). To find the gradient oH we note first that since the gradient is with respec
to the unprimed variables, the gradient operator can be put under the integral sign. ¢
the §-functions are anti-symmetric with respect to the primed and unprimed variables,
gradient with respect to the unprimed variables can be replaced by the gradient with re:
to the primed variables. The resulting volume (or area in two-dimensions) integral can:
be transformed into a surface (line) integral by a variation of the divergence theoren
gradients. Symbolically,

VH = /V(S(x —x)8(y—y)da = —/ V' (Ex—x)8(y—y))da
=—f$u—xbay—vmda

where the prime on the gradient symbol denotes the gradient with respect to the pr
variables. The velocity field is smooth and a function of the unprimed variables, so we
bring it under the integral sign, resulting in

oH

— =-V.VH = —f&(x—x’)S(y—y’)Vnda
at S
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whereV,, =V - n. Since the density jump is constant, this leads to

0
* - fAmS(x ~X)8(y — Y)Vads,
at  Js

where we have puhp = po — pj. Rewriting the mass conservation equation as

ap

V. pu=—
p at

and replacing the right hand side by the expression above yields Eqg. (5) in the paper. |
we have assumed that the area occupied by the other fluid is finite s8 that closed
contour. Since the contribution of most of the integral is zero, we can replace it by one
a part of the contour and drop the circle on the integral.
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